
Writing GUI Wizards in Python
Release 1.4

Rich Salz

November 9, 2001

Zolera Systems,http://www.zolera.com
E-mail: rsalz@zolera.com

Contents

1 Introduction 3

2 Input 3
2.1 Font Modifiers . 5
2.2 Sheet Changes. 6
2.3 Example. 6

3 Validation 7
3.1 Example. 7

4 Help 7
4.1 Example. 8

5 More Examples 8

COPYRIGHT

Copyright c© 2001, Zolera Systems, Inc.
All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the ”Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all
copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY
SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

2 Contents

1 Introduction

The wizard module makes it easy to write typical desktop GUI-style ”wizards,” where a user is guided through a
series of forms and enters configuration data. By design, thewizard module tries to shield the developer from all
aspects of GUI development. This extends to keeping theTkinter names out of the global namespace.

A wizardencapsulates a set of interactions with a user. It contains one or moresheets. A sheet can either have text for
the user to read, or it can have one or more data entryfields. These fields can be text entry, file or directory selection,
check-boxes or multiple-choice lists. When the user indicates that they are finished, thewizard returns a dictionary
containing the data the user entered. Entries can also bevalidated(see section 3) by calling out to application-specific
code. Validation can be done when the user tries to move to the next sheet, or at the end after all the data has been
entered. Thewizard module includes several validators.

2 Input

Thewizard module defines a number of classes. Only theWizard class has methods beyond the constructor.

classWizard (sheets, title[, root=None[, defaults=None]][, **keywords])
The main class of this module. Users create an instance of this class, and thenrun it, which creates the display
and solicits input from the user.

The root parameter is the root of the display into which the wizard should be created, and is usuallyNone.
(Advanced applications may wish to create their own popup or frame, for example, but must be aware that the
wizard module usesTkinter ’s grid layout manager.) Thesheetsparameter is a list ofLicenseSheet ,
DynamicSheet , andSheet objects, each of which represents one “page” of display. Thetitle parameter is a
text string that is displayed at the top of the wizard. Thedefaults parameter is a dictionary that contains the
default (initial) values of all the entries.

The following keyword parameters can also be given:

Keyword Default Description
entrywidth 40 The desired width of text entry fields, in characters.
whenvalidate atend When to validate user input. Choose fromatend or perpage .
center 0 If non-zero, then the wizard is centered in the screen.
geometry None A geometry string used to specify the on-screen placement. The default

is for the window system to control the location.
help None A Help object for context-sensitive help, see section 4.
helpkey ’<F1>’ If a Help object is given, then this parameter specifies the help key. For

details, see theTkinter documentation.
titlefont 16-point bold italic A font modifier to display the title font.
sheetfont underlined The font modifier for the sub-titles on each sheet.
sheetchange None A SheetChange object, see below.

Thecenter andgeometry parameters are ignored ifroot is notNone.

set defaults (defaults)
Sets the default initial values from the dictionarydefaults .

run (self[, start = 0])
Start the display and collect the user’s input. The optionalstart parameter specifies the starting sheet. This
method returnsNone if the user clicked on theCancel button, or a dictionary containing the data the user
provided. Note that all values in the dictionary are text strings.

This method can be called multiple times. Unlessset defalts is called, subsequent invocations will start
with the values from the previousrun .

classLicenseSheet (title, text[, **keywords])

3

A LicenseSheet object contains text to be displayed to the user. The text can be specified inline, or come
from an external file.

The title is the text to appear at the top of the sheet. Thetext is the text to display. If thefile parameter
is specified (see the following table), thentext is used only if the file cannot be read.

The following keyword parameters can also be given:

Keyword Default Description
file None Name of the file containing text to display. It is not an error if the file cannot

be open – the value of thetextwill be used instead.
height 10 Height of display area, in lines.
width 40 Width of display area, in characters.
wrap Tkinter.WORD Whether or not to do word-wrapping on lines. If set toTkinter.CHAR

then lines are broken without regard to word boundaries. To avoid wrap-
ping, usehscrollbar .

font None Font modifier; see below.
mustread 0 If non-zero, then theNext/Done button is disabled until the end of the

text appears on the screen.
hscrollbar 0 If non-zero, then a horizontal scrollbar is attached to the bottom of the text

box.

classDynamicSheet (title, builder[, **keywords])
A DynamicSheet object is like aLicenseSheet except that the content is generated dynamically each
time the sheet is displayed. This class can be used to generate “confirmation” pages that offer a last chance to
view the actions that the program is about to perform.

The title is the text to appear at the top of the sheet. Thebuilder is an object that must implement the
following three methods:
open (dict)

Thedict parameter is a dictionary with all the current field values. The return value is ignored.

readline ()
This method returns text to be displayed. It will be called repeatedly until it returnsNone.

close ()
This method will be called whenreadline is finished. The return value is ignored.

The following height , width , wrap , font , andhscrollbar keyword parameters defined in theLi-
censeSheet class can also be used.

classSheet (title, fields[, **keywords])
A Sheet object contains entry fields for the user to fill-in. Thetitle parameter is a text string to be displayed at
the top of the sheet. Thefieldsparameter is a list of‘‘xxxField’’ objects.

The following keyword parameters can also be given:

Keyword Default Description
longvalidate 0 If non-zero, then validating the fields on this sheet could take a noticeable

amount of time, so thewizard module will temporarily change the cursor
to an hourglass or its equivalent.

The field objects also accept thelongvalidate parameter.

classSpacerField ([**keywords])
This object is used to leave one or more blank lines, usually used to group related entries.

The following keyword parameters can also be given:

Keyword Default Description
lines 1 Number of blanks lines desired.

4 2 Input

classLabelField (prompt)
This object is used to display a line of text on the sheet. It is usually used to provide a heading for a group of
related fields, or to provide a label for subsequent aRBField (radiobutton) object.

The following keyword parameters can also be given:

Keyword Default Description
font None Font modifier; see below.
align align l Specifies the alignment of the text; usealign l , align c , oralign r

for flush-left, center, or flush-right alignment.

classEntryField (key, prompt[, **keywords])
This object is used to collect a line of text from the user. Thekeyparameter specifies the key in the dictionary of
returned values to use for this field. Thepromptparameter specifies the prompt text that will appear to the left
of the text-entry area.

The following keyword parameters can also be given:

Keyword Default Description
private 0 If non-zero, the text will not be displayed. This is useful for password fields.
validate None A Validation object to be called when validating the field. See section

3.
startdisabled 0 If non-zero, then the field is initially disabled.
entrywidth 30 The desired input width, in charcters.

classFileField (key, prompt[, **keywords])
This is the same asEntryField , except that a “browse” button appears to the right of the entry area, allowing
the user to browse the filesystem and select an existing file.

classDirField (key, prompt[, **keywords])
This is the same asFileField , except that the user must pick a directory. New in version 1.4.

classCBField (key, prompt[, **keywords])
This object creates a checkbox on the sheet, withprompt as the text. Thekeyandpromptparameters are as
described in theEntryfield class, above. The returned value will be the text string‘‘0’’ or ‘‘1’’ .

The following keyword parameters can also be given:

Keyword Default Description
enables None A comma separated list ofkeys that identify the fields controlled by this

button. The fields in the list are enabled, or disabled, according to whether
this field is checked or not.

classRBField (key, choices[, **keywords])
Thekeyparameter is as described in theEntryfield class, above. Thechoicesparameter is an array of text
strings. They will be displayed one per line, with the user allowed to select one. The returned value will be the
numeric index of the value chosen, as a string.

classDDField (key, prompt, choices[, **keywords])
This is like aRBField , except that it is presented with the specifiedprompton the left and a pull-down list of
thechoiceson the right. The returned value will be the numeric index of the value chosen, as a string. New in
version 1.4.

2.1 Font Modifiers

Thewizard module uses Python dictionaries to control fonts, using thetkFont module to create the fonts it needs.
The following table lists the dictionary entries that can be used to modify the default fonts chosen by thewizard
module. Note that the keys are text strings.

2.1 Font Modifiers 5

Key Description
family A text string naming the font family.
size An integer specifying the ont size in points; use a negative number to spec-

ify size in pixels.
weight The font thickness; usetkFont.NORMAL (generally the default) ortk-

Font.BOLD .
slant The font slant; usetkFont.NORMAL (the default) ortkFont.ITALIC .
underline If non-zero, text is underlined; the default is0 except for the sheet titles.
overwrite If non-zero, text is overstruck; the default is0.

2.2 Sheet Changes

When aWizard object is created, a callback object can be given that will be invoked every time the wizard displays
a different sheet. This object must implement the following method:

sheetchange (dict, sheetnum)
Thedict parameter is a dictionary with all the current field values. Thesheetnumparameter is the new current
sheet number. The return value is ignored. In particlar, it is impossible to prevent moving to the new sheet —
see the description of validators in section 3.

2.3 Example

The following example constructs a three-sheet wizard. Note that it also uses validators which are described in section
3

license=’’’This is your license agreement...
’’’

MySheets = (
LicenseSheet(’License’, license, font={’family’:’fixed’}, mustread=1),
Sheet(’Account information’, (

EntryField(’adminname’, ’Administrator name’,
validate=Nonblank(’administrator’)),

EntryField(’adminpass1’, ’Administrator password’,
private=1, validate=PassConfirm(’administrator’, ’adminpass2’)),

EntryField(’adminpass2’, ’Repeat password’,
private=1),

)),
Sheet(’Network information’, (

EntryField(’hostname’, ’Name of the host’,
validate=Nonblank(’hostname’)),

FileField(’path’, ’Hosts file’),
SpacerField(),
LabelField(’Network protocol’),
RBField(’protocol’, (’TCP/IP’, ’DECnet’)),
SpacerField(),
CBField(’localserver’, ’Start local server’, enables=’portnum’),
EntryField(’portnum’, ’Server port#’,

validate=InactivePort(’port’))
)),

)

6 2 Input

3 Validation

Most fields accept avalidate parameter, which takes an object responsible for validating the user’s input. A
validator must implement thevalidate function. If the user’s input is invalid, it should raise theInvalidEntry
exception.

classValidator (foo)
TheValidator class may be used as a base class for any validators.

validate (dict, field)
This method validates the user’s input. Thedict parameter will be a dictionary containing all the current values,
and while thefield is the key for the field being validated. (Remember that values in the dictionary are text
strings.) If the user’s input is not valid, this method should raise anInvalidEntry (or subtype) exception.
The return value is ignored.

exceptionInvalidEntry
Exception raised when the input is invalid. The constructor takes a text string (stored as thetext attribute)
which will be displayed to the user.

A number of utility validators are provided in thewizard module:

classPassConfirm (what, confirm)
Validate that a field and its “confirmation” match. Thewhatparameter should be a very short description (usually
one word) displayed to the user. Theconfirmis the dictionary key that has the confirming (“other”) entry.

classNonblank (what)
Validate that a field is not blank. Thewhatparameter is described in thePassConfirm class, above.

classPositiveNumber (what)
Validate that a field is a positive number. Thewhatparameter is described in thePassConfirm class, above.

classInactivePort (what)
Validate that a field specifies a TCP port that is not used on the local host. This is a subtype ofPositiveNum-
ber .

3.1 Example

Here is the source for thePassConfirm class, used in the previous example:

class PassConfirm(Validator):
def __init__(self, what, confirm):

self.what = what
self.confirm = confirm

def validate(self, dict, field):
if len(dict[field]) == 0:

raise InvalidEntry, ’Must provide %s password.’ % (self.what,)
if dict[field] != dict[self.confirm]:

raise InvalidEntry, ’Mismatched %s passwords.’ % (self.what,)

4 Help

A wizard object can provide context-sensitive help. To do this, the object must be provided when the wizard is
created, and it must implement the following two methods:

help (root, key)

7

This method should display the help appropriate for the indicatedkey. The root parameter is the display root
provided when the wizard was created. It can (and often will) beNone.

sheethelp (root, sheetnum)
This method is similar, but should display general help for sheet numbersheetnum .

Thewizard module provides a utility class that implements pop-up help,HelpPopup .

classHelpPopup ()
This class provides unformatted help text in a popup dialog text box with a scrollbar and aDismiss button. It
implementssheethelp as a call tohelp with the key specified assheetN , whereN is the sheet number.

To use this class, create your own class derived fromHelpPopup and implement the following methods:

start (key)
This method should do any preparations necessary to retrieve the help text. The return value is ignored. If it
raises an exception, then a message saying no help is available will be displayed.

eof (key)
This method should return zero as long as there is more text to display. This method is calledbeforeeach call to
get .

get (key)
This method should return (portions of) the help text to display.

4.1 Example

Here is a class that stores each help in its own file.

import os
class MyHelp(HelpPopup):

def __init__(self, helpdir):
HelpPopup.__init__(self)
self.filename = helpdir

def start(self, key):
caller catches exception and prints default.
self.infile = open(os.path.join(self.helpdir, key), "r")

def get(key):
read all the text at once and return it.
text = self.infile.read()
self.infile.close()
return text

def eof(key):
return self.infile.closed

5 More Examples

This example uses the code and data from the previous examples, to make a complete wizard:

8 5 More Examples

from wizard import *

helpobj = MyHelp(’/usr/local/share/helpdir’)
w = Wizard(MySheets, ’Installation’, None,

whenvalidate=perpage, help=helpobj)
w.set_defaults({’adminname’: ’root’,

’path’: ’/etc/hosts’,
’protocol’: ’0’,
’localserver’: ’1’})

answers = w.run()
if answers == None:

print ’Cancelled.’
sys.exit(1)

This example puts a cycling series of images to the left of the wizard:

from wizard import *
from Tkinter import *

class Cycler:
def __init__(self, sheets, label):

self.label = label
self.images = []
try:

Idefault = PhotoImage(’default.gif’)
except:

Idefault = None
for i in range(len(sheets)):

try:
self.images.append(PhotoImage(file="pic%d.gif" % (i,)))

except:
self.images.append(Idefault)

def goto(self, dict, sheetnum):
self.label[’image’] = self.images[sheetnum]

Create a display root, the left-side frame holds the images
and the right-side frame holds the wizard.
title = ’Installation’
root = Tk()
root.title(title)
root.iconname(title)
fLeft = Frame(root)
imageholder = Label(fLeft)
imageholder.grid()
fLeft.grid(row=0, column=0)
fRight = Frame(root)
fRight.grid(row=0, column=1)

w = Wizard(MySheets, title, fRight,
sheetchange=Cycler(MySheets, imageholder))

answers = w.run()
if answers == None:

print ’Cancelled.’
sys.exit(1)

9

	1 Introduction
	2 Input
	2.1 Font Modifiers
	2.2 Sheet Changes
	2.3 Example

	3 Validation
	3.1 Example

	4 Help
	4.1 Example

	5 More Examples

